
Hijacking an embedded, statically linked python
interpreter in an external process under win32

Marc Förster
Institute for Distributed Systems

Ostfalia Hochschule für Angewandte Wissenschaften
Wolfenbüttel, Deutschland

mail@lpcvoid.com

Abstract—This document describes an attack on an external,
embedded python interpreter running in a separate process on
win32. It enables the attacking process to force the target process
to execute arbitrary Python code within the main interpreter
context.

Index Terms—win32, code injection, python

I. INTRODUCTION

Python [2] is a general purpose programming language,
which is commonly embedded into other applications for the
purpose of adding scripting capabilities. Embedded in this case
means that the target application has no dependency to any
external DLL, as the python library was statically linked into
the application executable at compiletime.

The attack is performed by injecting x86 code into the target
address space, which will in turn call the python interpreter
with the code supplied by the attacking process.

II. CODE INJECTION

A. General

The term code injection can refer to many scenarios. Within
the scope of this paper, it means that arbitrary machine code
is written by one process (attacker) into another (target), and
then executed to run within the targets address space. This
technique is used by several types of programs, for example
debuggers. They use this technique to alter the control flow
of debugged targets, for example by writing breakpoints or
changing code on the fly while debugging, if the user wishes
so.

Programs that are written to cheat in online games also use
some of the functions presented within this paper.

While most use cases are certainly without bad intentions,
this technique can easily be abused for nefarious purposes 1.
One such purpose will be demonstrated in this paper.

B. Methods

On the win32 platform, there are several possible methods
to inject code into a foreign process. Two of these shall be
discussed here, but just one of them will be used throughout
this paper. In technical terms, both methods do not differ much
from each other. Both rely on allocating space inside the target,
writing data and/or code, and executing that code within the

1Many malware authors use this technique to trick security software.

target. Depending on the method used, some steps may be
omitted.

1) Process access: Gaining access to the process is the
first thing an attacker has to do in both of these meth-
ods. It requires Administrator privileges, because the at-
tacker needs to call the OpenProcess [7] function with PRO-
CESS VM OPERATION, PROCESS VM WRITE and PRO-
CESS CREATE THREAD privileges in order to get a handle
usable for further operation. Depending on the goal of the at-
tacker, PROCESS VM READ may also be required. Windows
offers a macro where all privileges are already set, named
PROCESS ALL ACCESS. This flag is passed to OpenProcess
using the dwDesiredAccess parameter. It also needs two other
parameters, where only the last one, dwProcessId, is relevant
in scope of this paper. The dwProcessId parameter requires
the Process ID of the target process. For more information on
process access rights, see [8].

1 HANDLE OpenProcess(
2 DWORD dwDesiredAccess,
3 BOOL bInheritHandle,
4 DWORD dwProcessId
5 );

After the process handle is obtained with the correct privi-
leges, the attacker can continue with the attack.

2) DLL injection: A very common approach to getting
another process to execute external code within its own address
space is via use of the Windows DLL loader. A DLL is a
dynamic library containing auxiliary code on the Windows
operating system. In technical terms, it requires that the
path to the DLL (or the name, if the path is in the PATH
environment variable) is located in memory. This is then
passed as a parameter to LoadLibrary [3], a winapi function
to dynamically load a DLL. It must be pushed to the stack
before calling the api function, since it expects the filename
as a string. In case the path (or name) of the DLL is not
somewhere in the targets memory already, it is required to
write it first. This is done using WriteProcessMemory [4] Api.

3) Direct code injection: The second method is direct code
injection. Contrary to DLL injection, where the goal is to
call LoadLibraryA or LoadLibraryW depending on Unicode
constraints, with direct code injection the goal is to execute
injected code directly. The advantage of this is that it’s harder



to detect than DLL injection, and has a much smaller footprint
under normal circumstances, since only a small fragment of
code is written into the target application, instead of a whole
DLL loaded at runtime. The downside is that normally direct
code injection is more complex, since the attacker cannot
always rely on the compiler just outputting a ready-to-inject
binary.

C. Methology of direct code injection

1) Memory Allocation: Typically, the first step (after having
aquired a process handle as described in II-B1 on the preceding
page) of a direct code injection is finding or creating some
memory where the code that is to be executed can be safely
written and later on executed. Ideally, the attacker does not
have to allocate any memory for this. Instead, he finds a region
of memory inside the target address space that isn’t populated
by anything else. This often occurs between functions, where
compilers insert padding. This region between two functions
is often called a code cave [5].

Fig. 1. Example of a code cave

The padding in this case consists of 0xCC bytes, which
translate to an int3 instruction in x86 assembly. This means it
will trigger interrupt 3, which is another term for a software
breakpoint. Despite what some sources online say, code cave
paddings do not always contain 0x00 bytes. This depends on
the used compiler.

Within this region, an attacker is free to place whatever code
he wants, as it is never used within normal operation of the
target application. A glaringly obvious advantage of using a
code cave is that no memory needs to be allocated. Also, since
these code caves reside in memory pages that are already set to
be executable due to the actual program code residing in them,
marking the page as executable is not required. A downside
to this technique is that these code caves are often times too
small to use for anything more substantial, as they rarely
reach adequate size. For simple trampoline attacks, where
the attackers injected code simply calls a function within the
targets address space, it may be enough. But for everything
else, where code sizes can approach multiple KiB, memory
needs to be allocated. Another disadvantage is that these code
caves are normally not at a known address. They need to be
searched for, which can take considerable time and resources
an attacker may not have. Due to the disadvantages of code

caves, specially in regard to their small size, code will be
allocated by the attacker within the targets address space for
the purposes of this paper. This is done using the winapi
function VirtualAllocEx [6].

1 LPVOID WINAPI VirtualAllocEx(
2 _In_ HANDLE hProcess,
3 _In_opt_ LPVOID lpAddress,
4 _In_ SIZE_T dwSize,
5 _In_ DWORD flAllocationType,
6 _In_ DWORD flProtect
7 );

The first parameter hProcess is the process handle, which
was obtained by OpenProcess. Following that is lpAddress,
which is not interesting in this case, since the attacker does not
care where the allocated memory resides within the process.
dwSize is much more interesting, since the attack needs a
certain amount of memory to write its code and parameters.
flAllocationType is also important, since the attacker wants
pages to actually be allocated and ready to use. The last
parameter, flProtect, defines the memory protection options for
the newly allocated memory. This parameter depends on what
shall be done with the memory later on. The attack demon-
strated within this paper requires code execution capabilities
along with normal data I/O, which is why it is requested that
this region is readable, writable and executable. For sake of
simplicity, two regions are allocated. One for the x86 code,
and one for the parameters that this code needs (which, along
with other data, also includes the python script that is to be
executed as the primary goal of this attack).

Target Size Memory protection
x86 code constant PAGE EXECUTE READWRITE

parameters sizeof(parameters) PAGE READWRITE

TABLE I
DIFFERENT PARAMETERS OF PAGE ALLOCATION

Again, to be concise, one memory region would be enough,
since both data and code could be written consecutively,
as long as the x86 code is terminated (ret x86 instruction)
properly. Using two regions is just more comfortable. It is up
to the reader to decide if his scenario allows for this comfort.

2) Writing to allocated memory: Now that the attacker
has memory within the target process, which he can freely
write to, actually writing is the next step. Under windows,
there are multiple ways to write to a foreign memory region.
The one presented in this paper is a winapi function called
WriteProcessMemory.

1 BOOL WINAPI WriteProcessMemory(
2 _In_ HANDLE hProcess,
3 _In_ LPVOID lpBaseAddress,
4 _In_ LPCVOID lpBuffer,
5 _In_ SIZE_T nSize,
6 _Out_ SIZE_T *lpNumberOfBytesWritten
7 );

hProcess is the process handle, lpBaseAddress is the address
where data is to be written (as allocated by VirtualAllocEx



previously), lpBuffer is the pointer to a buffer that shall be
written (located in attacker address space), nSize is the size of
the buffer, and lpNumberOfBytesWritten points to a long that
will contain the actual written byte count after execution. This
parameter is important, since it lets the attacker know if all
bytes where written correctly. Failure to do so would cause
the target process to crash with high certainty.

3) Executing injected code: Providing that the attacker has
sufficient rights, the attacker now owns a memory region
within the target process, which contains both executable x86
code written by the attacker, and data. This x86 code can do
whatever the attacker wants, which should instantly demon-
strate the danger of this attack. The last step is executing this
code within the target. The attacker can do this via multiple
methods, but this paper concentrates on the most straight
forward one, namely an api called CreateRemoteThread [9].

1 HANDLE CreateRemoteThread(
2 HANDLE hProcess,
3 LPSECURITY_ATTRIBUTES lpThreadAttributes,
4 SIZE_T dwStackSize,
5 LPTHREAD_START_ROUTINE lpStartAddress,
6 LPVOID lpParameter,
7 DWORD dwCreationFlags,
8 LPDWORD lpThreadId
9 );

This is a very powerful function, which allows a thread to
be created in a foreign address space. The function expects,
similar to the previous ones, a thread handle hProcess. The
second parameter, lpThreadAttributes, is set to NULL since
the attacker does not care to pass a security descriptor [10]
for this attack. Parameter dwStackSize describes the default
stack size of the thread that is to be created. The attacker sets
this value to 0, so that the default size is used, which is 1MiB
on the MSVC compiler 2. A lower value could be considered,
depending on the complexity of the injected x86 code that shall
run. The next two parameters, lpStartAddress and lpParameter,
are pointers located in the address space where the thread is
to be created (target). In this case, they are the addresses of
the two buffers allocated by VirtualAllocEx. dwCreationFlags
makes it possible to define flags that affect the behavior of
the thread. Since the attacher does not want the thread to run
immediately after creation, he passes CREATE SUSPENDED
here. Otherwise, the attacker could pass a 0 (no flags), which
immediately starts execution. The reason the thread shall start
in a suspended state is so the attacker can do other things
before execution, such as making sure that the target is in
a certain state, or cleanup operations. Once the attacker is
ready for his injected code to execute, he calls ResumeThread
[12] with the thread handle of the created thread, which was
returned by CreateRemoteThread.

1 DWORD ResumeThread(
2 HANDLE hThread
3 );

2can be changed via STACKSIZE statement in module definition file

This sets the thread to running, and the code is executed. To
make it possible to wait for the end of execution, the attacker
should use WaitForSingleObject [11]. This is important since
it allows the attacker to react to the end of execution, for when
he wants to perform cleanup. Otherwise, the risk of premature
cleanup is high, and doing so can potentially crash the target
application.

1 DWORD WaitForSingleObject(
2 HANDLE hHandle,
3 DWORD dwMilliseconds
4 );

This function expects two parameters. The first is hHandle,
same as for ResumeThread. The second parameter, dwMillisec-
onds, specifies the amount of time that windows shall wait for
the execution of the injected thread to end, in milliseconds.
The attacker sets this to a value acceptable to him.

4) Cleaing up: After WaitForSingleObject returns, the
thread has run successfully and executed the injected code.
The attack was a success. Now the attacker can clean up the
thread context using CloseHandle winapi call.

1 BOOL WINAPI CloseHandle(
2 _In_ HANDLE hObject
3 );

This function expects the handle of the thread. It can be
used on any HANDLE object within Windows.

D. Naked code

The direct code injection method presented in II-C on
the previous page makes it possible to execute code within
a target process. This code needs to be carefully crafted.
For this attack, the code shall call a function of the python
interpreter that is used to execute Python code, along with
two auxiliary functions which are Python specific. That means
there are three addresses which have to be called, each one
with different parameters.

Naked code is achieved by marking a function with the
naked keyword. This forces the compiler to generate code
without a prolog and epilog.

1 __declspec(naked) void static __stdcall
inject_function() {}

Since the attacker is injecting this code into a remote address
space, he cannot rely on any other external functions. Also,
the attacker is responsible for stack maintenance. Additionally,
removing compiler generated code that is often not needed for
the injection to work reduces function size. This makes naked
code an attractive choice.

prolog code is code that the compiler generates for a given
function which sets up the stack in order for the function
to execute properly. This includes local variables, function
arguments, and the return address pushed to stack by the call
opcode in x86. In x86 with cdecl calling convention, which
is what most targets use, the ebp register contains a pointer



to the current stack frame, and this must be setup before the
actual function code is set up.

1 push ebp
2 mov ebp, esp
3 sub esp, 8 ; add stack space for local variables

epilog does the exact opposite, it restores the stack pointer,
and returns to the caller.

1 mov esp, ebp
2 pop ebp
3 ret

These two elements will not be automatically generated
when using naked code, and that’s an attribute the attacker
wants, since he should have as much granularity about the
injected code as possible. For this reason, the code the at-
tacker constructs will be marked naked, and the attacker must
implement various steps himself.

III. ATTACKING PYTHON

A. Overview

Python is a general purpose programming language with
rising popularity [14]. Many programs chose to embed Python
as a method to add scripting capabilities to an application.
There are two methods to do this. The first one is to use
a shared library 3, which gets loaded into the applications
address space at runtime through the PE/ELF loader. The other
method is compiling Python directly into the host application,
a process referred to as ”embedding”. While the shared library
approach is far easier to implement due to the ease of use
that such a library offers, embedding the source code is a
more complex task. This is because the set of function a
shared library offers is normally designed for external use,
where embedding a scripting language in general often times
requires wrapping its interface in a more project related
manner. Fortunately though for Python, there is a ”high level”
api exposed by the pythonrun.h header. It is also documented
within the Python documentation [15].

B. Target function

Within pythonrun.h, there exists one function
which is of particular interest for this paper, namely
PyRun SimpleStringFlags.

1 int PyRun_SimpleStringFlags(const char *command,
PyCompilerFlags *flags)

This function accepts a char pointer to a buffer that contains
Python source code, called command. The second parameter
is not relevant under normal circumstances, but may be useful
in special scenarios. This function is the one this attack aims
to call within the target application, with the attackers code as
argument.

3a DLL (Dynamic Link Library) under Windows, or an SO (Shared
Object) under POSIX flavored operating systems

PyRun SimpleStringFlags expects the Python subsystem to
be properly initialized before being called. This initialization
is not subject to this paper, but in most cases the reader does
not need to worry about it anyhow, since it was most likely
already called by the target application, as it needs to initialize
the Python subsystem for itself at some point. For sake of
being complete, PyInitialize() needs to be called. Additional
calls need to be made in order to avoid crashes when executing
this attack, but more about that later.

Obviously, this attack depends on this function being avail-
able somewhere within the targets application code. If the
programmer of the target application removed it, this attack
needs to be adjusted. The attacker could in that case emulate
the behavior of PyRun SimpleStringFlags, which is fairly
trivial too, as the whole function is only 102 bytes long in
Python 2.7. It calls a total of seven subfunctions, of which
two could theoretically be omitted4. Alternatively, the attacker
could also reverse engineer the target application to find the
interface to the Python interpreter that the target uses itself,
and adjust this attack even further. The author of this paper
has never seen an embedded Python interpreter in the wild that
attempted to hide the interface described in this paper though.
Should the reader ever need to search for this function in a
target application, he should use the following byte sequence,
which can locate the function within any embedded interpreter.

83C40483C8FF5DC38301FF

This sequence locates the following x86 machine code,
which is located in PyRun SimpleStringFlags at offset 0x3C.

1 PyRun_SimpleStringFlags+0x3C add esp, 4
2 PyRun_SimpleStringFlags+0x3F or eax, 0xFFFFFFFF
3 PyRun_SimpleStringFlags+0x42 pop ebp
4 PyRun_SimpleStringFlags+0x43 retn
5 PyRun_SimpleStringFlags+0x44 add [ecx], 0xFFFFFFFF

C. Global interpreter lock

Unfortunately, the attacker cannot simply inject code
that calls this function with two parameters, since
PyRun SimpleStringFlags is not thread safe. Due to the
nature of this attack, where the attacker creates a thread within
the address space of the target, he automatically makes the
target application a multi threaded application, albeit for just
a short period of time, namely while executing the attackers
code. This can potentially crash the whole application, since
the Python interpreter, amongst many other things, does not
maintain reference count in a threadsafe fashion. For this
reason, Python introduced the Global Interpreter Lock, in
short GIL. It introduced a possibility to lock the interpreter
so that several threads can consecutively use it after each
other, without the danger of a crash. Using the GIL in
software requires two functions. First, PyGILState Ensure is
called, which returns a PyGILState STATE identifier, which
is actually just an integer. This identifier needs to be stored,
and afterwards Python code may be executed. When the

4PyErr Print() and PyErr Clear(), these are only error handling.



thread is done executing Python, it unlocks the interpreter
again, so that another thread may use it. This is done via
PyGILState Release, which expects the PyGILState STATE
identifier as a parameter.

In order for this mechanism to work, the Python interpreter
needs to be initialized with two additional calls, ideally directly
after PyInitialize was called. These two functions are PyE-
val InitThreads and PyEval ReleaseLock. The first call initial-
izes the GIL. It is important that this function is called before
the GIL is obtained the first time with PyGILState Ensure,
otherwise the result is undetermined. The second call releases
the GIL for use with other threads. Most applications that
embed Python call these functions beforehand. If this is not the
case though, the attacker must make sure that the application
does do so, for example by hooking the function that sets
up the Python interpreter, and forcing it to execute them
additionally to the rest of the initialization.

D. Constructing x86 attack code

The code that is to be injected into the target process needs
to fullfill several constraints. First and foremost, it must be
able to execute Python code. This is done by acquiring the GIL
using PyGILState Ensure, saving the identifier it returns, call-
ing PyRun SimpleStringFlags to actually execute Python code,
and then finally return the GIL with PyGILState Release. The
second constraint is that it should be small, so the amount
of memory the attacker needs to allocate within the process
remains small. Third, it needs to be parameterizable. This
means that the code shouldn’t need to be changed in order to
execute it with different parameters. This is why the attacker
should allocate a separate memory region for any data that
could change. That includes the actual Python script, and
any constants that the attacker could want to change. These
constants are the addresses of the three functions he wants to
call within the address space of the target process. The reason
the attacker should not define these directly within the naked
code, is that this technique enables him to later on update
the addresses easily, without needing to recompile the naked
function.

As a side note, it is, of course, possible to first write the
naked code with placeholders into memory, and then patching
these placeholders with the correct values before execution.
This has the advantage of faster code execution, as addresses
do not need to be copied out of the parameter memory. The
downside in this case would be the need for at least one more
external WriteProcessMemory call. All things considered, the
author of this paper recommends keeping addresses together
with the parameters.

The code, once started, isn’t very different to any other
function call. It follows the cdecl calling convention of pushing
parameters to stack in reverse order, while stack cleanup and
synchronization is done by the caller. Since all arguments are
widened to 32 bit, each literal pushed, added or otherwise
processed is a 32 bit integer. Results of functions are returned
in the eax register as widened 32 bit integers. Note that these
rules apply for 32 bit applications. For 64 bit, there are other

rules to be considered, see [18]. The 64 bit ABI5 also differs
by data type.

The following is a proof-of-concept naked function that
satisfies the above three criteria, and aims to be self explaining.
This code makes minimal use of the stack (for parameters and
for saving the GIL).

1 __declspec(naked) void static execute_py_str() {
2 __asm {
3 mov edx, [esp + 4]
4 mov edx, [edx + 4] //PyGILState_Ensure
5 call edx
6 push eax
7 push 0
8 mov edx, [esp + 0xC]
9 add edx, 0xC

10 push edx
11 mov edx, [esp + 0x10]
12 mov edx, [edx + 0] //PyRun_SimpleStringFlags
13 call edx
14 add esp, 8h
15 mov edx, [esp + 8]
16 mov edx, [edx + 8] //PyGILState_Release
17 call edx
18 add esp, 4h
19 ret
20 };
21 }

Note that the topmost address on the stack is the return
address of the calling function. Since the attacker is not
interested in it, he skips it in the first line and directly accesses
the second address, which is a pointer to the second memory
region the attacker allocated previously for the parameters.
This parameter memory is structured as follows.

1 #define PYCODE_LEN 8000
2 struct memInjectParams {
3 DWORD PyRun_SimpleStringFlags_addr;
4 DWORD PyGILState_Ensure_addr;
5 DWORD PyGILState_Release_addr;
6 char python_code[PYCODE_LEN];
7 };

After the x86 code and the parameter struct are written to
their respective memory locations, it becomes obvious that the
code does not need to be changed again. Whenever the attacker
needs to execute a different script, he simply writes the new
Python code to memInjectParams.python code and executes
the injected code again using CreateRemoteThread.

IV. COUNTERMEASURES

Within the past years, software security requirements have
increased. While this attack does not exploit any software
security bugs, it can nontheless compromise a running Python
application, in the worst case without the operator knowing
about it. The attack in this paper can be performed by anyone,
and requires no special software other than a compiler. It
does, however, require that the attacking application is given
elevated privileges, such as being started as Administrator.
Note that under Windows XP, this is not a requirement, which

5Aplication Binary Interface



should further underline the need to migrate to a more secure
version of the operating system. Added to that, programmers
seeking to make this technique more complicated for the
attacker should remove every part of the Python library that’s
not used internally, as this reduces the possibilities of attack,
since the hardest code to attack is the one that is missing.

If the attacker uses DLL injection as presented in this
paper for deploying attack code into a target process, it is
also possible to detect due to the DLL THREAD ATTACH
messages sent if the process is debugging itself. Furthermore,
even direct code injection can be detected using a TLS6

callback, which makes it possible for the target application to
be notified when threads are created within its address space.
Of course, now the attacker could patch this function, starting
a game of cat and mouse.

Methods such as enumerating all loaded modules to search
for unknown DLLs are quickly defeated and should not be
used, especially considering that there exist many legitimate
software that injects DLLs into windows processes. Window
managers come to mind, along with theming engines and even
some screen capturing software.

Hashing memory regions to detect injected x86 code is a
valid approach which a lot of anti-cheat protections for games
apply, such as Xtrap [16] and GameGuard [17], though these
protection schemes offer much more complex protection than
this.

In general, countermeasures for the discussed technique
would warrant writing a separate paper, complexity wise.

V. CONCLUSION

The technique presented in this paper allows an attacking
process to force an external python interpreter to execute the
attackers code. This was done via x86 code injection, where
x86 code that called relevant Python functions was injected
into the target process. Countermeasures where discussed
briefly towards the end.

REFERENCES

[1] Microsoft. (2019) naked (C++) — Microsoft Docs. Retrieved Jan-
uary 08, 2019, from https://docs.microsoft.com/en-us/cpp/cpp/naked-
cpp?view=vs-2017

[2] Python Foundation. (2019) https://www.python.org/. Retrieved January
08, 2019, from https://www.python.org/

[3] Microsoft. (2019) LoadLibraryA function — Microsoft Docs.
Retrieved January 08, 2019, from https://docs.microsoft.com/en-
us/windows/desktop/api/libloaderapi/nf-libloaderapi-loadlibrarya

[4] Microsoft. (2019) WriteProcessMemory function (Windows).
Retrieved January 08, 2019, from https://msdn.microsoft.com/en-
us/library/windows/desktop/ms681674(v=vs.85).aspx

[5] Code Cave. (2019) code cave - Wiktionary. Retrieved January 08, 2019,
from https://en.wiktionary.org/wiki/code cave

[6] Microsoft. (2019) VirtualAllocEx function (Windows). Retrieved
January 08, 2019, from https://msdn.microsoft.com/en-
us/library/windows/desktop/aa366890(v=vs.85).aspx

[7] Microsoft. (2019) OpenProcess function — Microsoft Docs.
Retrieved January 08, 2019, from https://docs.microsoft.com/en-
us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-
openprocess

6Thread Local Storage

[8] Microsoft. (2019) Process Security and Access Rights - Windows
applications — Microsoft Docs. Retrieved January 08, 2019, from
https://docs.microsoft.com/en-us/windows/desktop/ProcThread/process-
security-and-access-rights

[9] Microsoft. (2019) CreateRemoteThread function — Microsoft Docs.
Retrieved January 09, 2019, from https://docs.microsoft.com/en-
us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-
createremotethread

[10] Microsoft. (2019) SECURITY ATTRIBUTES structure (Windows).
Retrieved January 09, 2019, from https://msdn.microsoft.com/en-
us/56b5b350-f4b7-47af-b5f8-6a35f32c1009

[11] Microsoft. (2019) WaitForSingleObject function — Microsoft Docs.
Retrieved January 09, 2019, from https://docs.microsoft.com/en-
us/windows/desktop/api/synchapi/nf-synchapi-waitforsingleobject

[12] Microsoft. (2019) ResumeThread function — Microsoft Docs.
Retrieved January 09, 2019, from https://docs.microsoft.com/en-
us/windows/desktop/api/processthreadsapi/nf-processthreadsapi-
resumethread

[13] Microsoft. (2019) CloseHandle function (Windows). Retrieved
January 09, 2019, from https://msdn.microsoft.com/en-
us/library/windows/desktop/ms724211(v=vs.85).aspx

[14] TIOBE. (2019) Python — TIOBE - The Software Quality Com-
pany. Retrieved January 09, 2019, from https://www.tiobe.com/tiobe-
index/python/

[15] Python Foundation. (2019) The Very High Level Layer —
Python 3.7.2 documentation. Retrieved January 10, 2019, from
https://docs.python.org/3/c-api/veryhigh.html

[16] Xtrap Game Protection. (2019). Retrieved January 10, 2019, from
http://www.wiselogic.co.kr/

[17] GameGuard. (2019) nProtect GameGuard. Retrieved January 10, 2019,
from http://gameguard.nprotect.com/en/index.html

[18] Microsoft. (2019) x64 calling convention — Microsoft Docs. Retrieved
January 11, 2019, from https://docs.microsoft.com/en-us/cpp/build/x64-
calling-convention?view=vs-2017


